
\

TM-4786/000/00

AN ON-LINE SYSTEM FOR HAND-PRINTED
INPUT: FINAL REPORT FOR PHASE IV

(NASA-CR-126036) AN ON-LINE SYSTE8 FOB N72-21208
HAND~PRINTED INPUT Final Report T.G•.
Williams, et al (System Develo~ment Corp.~
30 Aug. 1971 44 P CSCL 09B Unclas

G3/08 24163·

Reproduced by TECHNICAL \
NAT10MNtiiON SERVICE
INFOR f Commerce

uS Dep?rtmf,erJ ~A 22151
Spnng Ie

30 August 1971

C'/lT 08
Ay- ~?OAO~

SERIES BASE NO. I VOL. I REISSUE

4786 /000/00

T~~~~~~~~

I~I@~~~~~I
(TM Series)

Approved for public release; distribution unlimited

AN ON-LINE SYSTEM FOR HAND-PRINTED
INPUT: FINAL REPORT FOR PHASE IV

by

T. G. Williams

Joan Bebb

August 30, 1971

SYSTEM

DEVELOPMENT

CORPORATION

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA

90406

A-1159 (5/681

The work reported herein was supported in part~
by contract NAS12-526, On-Line Character ~
Recognition, for the National Aeronautics SDE
and Space Administration, and contract .
DAHC15-67-C-0149, Computer-Assisted
Planning, for the Advanced Research Projects
Agency.

30 August 1971 i
(Page ii blank)

ABSTRACT

System Development Corporation
TM-4786/000/00

This document describes the capability of the graphic

input/output computer systems, developed by System

Development Corporation with support from contract

NAS12-526, as of 15 June 1971. It is divided into

three sections, which discuss (1) a new character­

recognizer and dictionary-building program, (2) an

initial flowchart-element-input program, and (3) a new

system, The Assistant Mathematician (TAM), which uses

ordinary mathematics to specify numeric computation.

Although reported separately, all three parts of the

system are necessary to achieve the overall goal of

allowing a user to carry on a mathematical dialogue with

the computer in the language and notation of his discipline

or problem domain.

PRECEDING pAGE BLANK NOT Fn"MEP

30 August 1971 iii
(Page iv blank)

System Development Corporation
TM-4786/000/00

Erasure

.

Section

l.

2.

3.

4.

4.1

4.2

4.2.1

4.2.2

4.2.3

REFERENCES

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

TABLE OF CONTENTS

INTRODUCTION • • • •

DICTIONARY BUILDING

FLOWCHART INPUT

TAM (THE ASSISTANT MATHEMATICIAN)

General Description of TAM •

Detailed Description of TAM

TAM Entities • •

TAM Operators

TAM Statements • • • • • •

.

FIGURES

Steps in Dictionary Construction

Effect of Recognition Threshold

Test Mode • • • • • •

Flowchart Input System •

Solution of Quadratic Formula

Variable Assignment . • • • • •

Matrix Arithmetic

Function Definition and Use

Iteration Statements • •

Open Up • • • • •

Close Up • • • • • • • •

Move Expression

.

Page

1

2

6

14

14

23

30

31

33

39

Page

3

5

7

10

15

17

18

20

24

25

27

28

29

Unclassified
Securitv Classification

DOCUMENT CONTROL DATA· R&D
(Secu,lty ",•••lIlc.llon 01 ,,,,., body o/.".,rac' .nd Ind••ln, anno'.rlon muol be .nl.red ..lien Ih. 0_'." _If'. cla••llledl

I. ORIGINATING ACTIVITY (Corporal••ulllor) a.. REPORT SECURITY CLA••IFICATION

System Development Corporation Unclassified
Santa Monica, California Z". GROUP

.'

3. REPORT TITLE

AN ON-LINE SYSTEM FOR HAND-PRINTED INPUT: FINAL REPORT FOR PHASE IV

4. OESCRIPTI VE NOTES (7'y,.. 01 rapM' and Incluol•••,••)

Final Technical Report 1 October 1969 - 15 June 1971
$. AU THO Res, (""., na_, IIIlddl. 1..,rI.I, I••' ...111.)

Thomas G. Williams

e. REPORT OATIE 7•• TOTAL NO. OF PAGIE. r'" NO. ;F REFS

August 30, 1971 39
80. CON TRAC T OR GRAN T NO. NAS12-526 and II•• ORIGINATOR'S RIEPORT NUMBERISI

DAHC15-67-C-0149
b. PROJECT NO. TM-4786

c. II". OTHER REPORT NOlS, (A..y olh., num".r. ",., ",.y " • •••'fIn.d
111/. reporl)

d.

10. OISTRIBUTION STATIEMENT

Approved for public release; distrib4tion unlimited

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT This document describes the capability of the graphic input/output computer
systems, developed by System Development Corporation with support from contract
NAS12-526, as of 15 June 1971, It is divided into three sections, which discuss (1)
a new character-recognizer and dictionary-building program, (2) an initial flowchart-
element-input program, and (3) a new system, The Assistant Mathematician (TAM) , which
uses ordinary mathematics to specify numeric computation. Although reported separately,
all three parts of the system are necessary to achieve the overall goal of allowing a
user to carry on a mathematical dialogue with the computer in the language and notation
of his discipline or problem domain.

Unclassified
Security Classification

Unclassified
Security Classification

I 14
LINK A LINK B LINK C

KEY WORDS

: ROLE WT ROLE WT ROLE WT

computer graphics
data tablet input
character-recognizer
flowchart
mathematical notation

I

I

I

Security Classification

30 August 1971 1
System Deve10mment Corporation

TM-4786/000/00

1. INTRODUCTION

This report describes the current capability of SDC's On-Line System for Hand­

Printed Input as of June 15. 1971. The overall goal of the project is to use

graphic input and output techniques to develop programming and computational

systems that utilize natural two-dimensional notation, specifically flowcharts

and ordinary mathematics. Such systems will allow a user, such as an engineer

or programmer, to carry on a dialogue with a computer in the language and

notation of his problem domain.

This report, which is based on previous work documented in SDC reports [1],

[2], and [3]. is divided into three sections. each describing a specific

development effort. Section 2 describes a new dictionary-building system for

handprinted-character recognizer. Handprinted-character recognition is an

essential part of the graphic-input process. allowing free placement of char-

acters on a two-dimensional surface. SDC's character recognizers require the

user to supply and define samples of his printing, from which a dictionary for

recognition is built. An improved method of supplying and defining such

samples is described.

Section 3 describes an initial f10wchart-syrnbo1-input program. The flowchart

language upon which this program is based is described in reference [3].

Section 4 describes the TAM (The !ssistant ~thematician) System, which uses

ordinary mathematical notation to specify numerical computation. TAM allows

arithmetic manipulation using a powerful set of operators as constants.

variables, and one-dimensional or two-dimensional arrays. It provides looping

facilities, single-statement functions. and user-defined input and output.

Some built-in functions. such as square root and logarithm, and built-in

constants, such as TI and e, are provided. TAM is an incremental system:

each statement is executed before the next statement is requested.

30 August 1971 2
System Development Corporation

TM-4786/000/00

2. DICTIONARY BUILDING

A high recognition rate over a large set (more than 120) of handprinted

characters is achieved by having the user build a dictionary from samples of

his handprinted characters. In Figure l(a) the program has requested samples

and the user has responded. In Figure l(b) the input characters have been

supplied to the recognizer and have not been recognized, as is indicated by

the '1'. There is one If' for each unrecognized input stroke, aligned with

the stroke, so that the user can easily determine which characters were not

recognized. The user may now select the alphabet, appearing at the top of the

screen, used for defining the input characters. The choices, selected by the

light buttons atthe lower right corner, are,S, special characters--mostly

punctuation and mathematical symbols; G, Greek letters; N, numbers--the

alphabet shown; U, uppercase; and L, lowercase.

The user defines a character by encircling it and touching the appropriate

character in the alphabet at the top of the screen, as shown in Figure l(c).

The system responds by entering the definition in the dictionary and then again

applying the character recognizer to the input string, with the result shown

in Figure l(d). More than one character can be defined at a time, as shown

in Figures l(e) and (f).

The character recognizer selects the dictionary entry that is the closest

match to the input character. A non-recognition threshold is also used that,

if exceeded for all comparisons between dictionary entries and input char­

acters, causes the program to generate a "no recognition" code. The dictionary­

building program allows the user two values of this threshold: the one normally

used in the recognition process, and a lower one, which is useful in showing

differences between input characters. Using the two thresholds, the user can

determine which input-character samples are different enough to be entered

separately into the dictionary. Figure 2(a) shows the result of recognition

with the lower threshold; Figure 2(b) shows the result of recognition on the

same samples with the higher threshold. The threshold is controlled by the

RT, IT light buttons on the bottom of the screen.

30 August 1971 3
System Development Corporation

TM-4786/000/00

(a) (b)

(c) (d)

Figure 1. Steps in Dictionary Construction

30 August 1971 4
System Development Corporation

TM-4786/000/00

(e) (f)

Figure 1. Steps in Dictionary Construction (Contrd)

30 August 1971 5
System Development Corporation

TM-4786/000/00

(a) (b)

Figure 2. Effect of Recognition Threshold

30 August 1971 6
System Development Corporation

TM-4786/000/00

The dictionary builder also contains a TEST mode that allows the user to test

the dictionary he has built. The user provides hand printed information, as

shown in Figure 3(a). The input characters that are recognized are replaced

by generated characters of the same size and position, as shown in Figure 3(b).*

At any time, the user may return to the dictionary-building mode and use the

current input to add to the dictionary, as shown in Figures 3(c), (d), and (e).

He may then return to the TEST mode, Figure 3(f).

3.

A flowchart, a graphical representation of a computer program or routine,

provides considerable aid in constructing and debugging a program. The over­

all aim of the flowchart-programming system is to allow direct entry and use

of the flowchart for computer programming. The programs described here allow

entry of flowchart structures. These programs are the initial part of the

full flowchart programming system.

A detailed description of the flowchart programming system is contained in

reference [3]. Briefly, a flowchart is described by circles, boxes, and inter­

connecting flow lines. Boxes contain either executable statements or decision

statements. The distinction between these statements is made by the number of

exiting flow lines; a processing box has one exiting flow line, a decision box

two. Circles are used as remote connectors and switches. A remote connector

is defined by a circle with only an entering flow line. The use of a remote

connector is specified by a circle with only an exiting flow line. A circle

with an entering flow and multiple exiting flow lines defines a switch. Both

boxes and circles may have only one entering flow line. Subsequent flow lines

entering a previously entered box or circle should be connected to the entering

flow line. Flow lines may intersect each other, but they may not overlap a

circle or a box.

*The 5 still means non-recognition.

30 August 1971 7
System Development Corporation

TM-4786/000/00

(a) (b)

(c) (d)

Figure 3. Test Mode

30 Augus t 1971 8
System Development Corporation

TM-4786/000/00

(e) (f)

Figure 3. Test Mode (Cont'd)

30 August 1971 9
System Development Corporation

TM-4786/000/00

To use the flowchart-input system, the user must supply two dictionaries for

use by the character recognizer. One must consist of boxes and circles, and

is used for the construction of the flowchart itself. The other should

contain all of the numeric, alphabetic, Greek, and special characters that

the user needs to provide text and header information for the flowchart. In

particular, the second dictionary should contain all of the characters the

user will need for the programming language statements to be placed within

the boxes and circles.

Figure 4(a) shows the initial state of the flowchart-input system as it is

ready for construction of a flowchart. Each flowchart consists of a single

page only. The page number, 1 in this case, may be changed by overwriting with

a new number. The user must supply the name of the routine and its type (proce­

dure or function). Figure 4(b) shows the results after this header information

is supplied.

After the header information is completed, the user may star~ flowcharting by

inputting boxes, circles, and lines. Strokes recognized as boxes and circles

are replaced by the generated boxes and circles at the same position and of

approximately the same size. Unrecognized strokes are considered to be flow

lines if an arrowhead exists on one end. All other strokes are ignored.

The direction of a flow line is determined by the placement of the arrowhead

regardless of the way the line was drawn. Each flow line is approximated to

the nearest 45° angle, the horizontal line being at zero degrees. Illegal

flow lines, such as those intersecting boxes and circles, are ignored.

Figures 4(c), (d), (e), and (f) show the construction of a flowchart. In

Figure 4(c), a remote connector has been defined and a processing box has been

used. In Figure 4(d), a decision box has been added; in 4(e), a switch has been

used. In Figure 4(f), interconnecting lines have been added, showing how flow

lines are connected to provide multiple entrance to a box or circle.

30 August 1971 10
System Development Corporation

TM-4786/000/00

(a) (b)

(c) (d)

Figure 4. Flowchart Input System

30 August 1971 11
System Development Corporation

TM-4786/000/00

(e) (f)

(g) (h)

Figure 4. Flowchart Input System (Cont'd)

30 August 1971 12
System Development Corporation

TM-4786/000/00

(i) (j)

(k) (1)

Figure 4. Flowchart Input System (Cont'd)

30 August 1971 13
System Development Corporation

TM-4786/000/00

Textual information may be entered by touching the TEXT light button. In the

current system, which does not have the capability to enter text within boxes,

text is entered in circles or beside flow lines, as shown in Figure 4(g). If

a box is selected after the TEXT button has been used, an asterisk will be

placed in the upper right corner to verify selection of the box. This is shown

in Figure 4(h) •

Elements are erased by a "scrubbing" motion. Boxes and circles are deleted by

scrubbing in the center of the element as shown in Figures 4(i) and (j). When

boxes and circles are deleted, their exiting flow lines are also deleted. Lines

are deleted by scrubbing the arrowhead, as shown in Figures 4(k) and (1).

The user may restart the flowcharting process at any time by touching the ERASE

button. Only the flowchart is deleted, and the user may begin redrawing the

flowchart. If the user wants to redo the entire routine, he touches the "New sbr"

button. The routine identification and type of routine must again be input

before the user can start flowcharting.

There is currently no save function; the user starts defining a new subroutine

each time the program is loaded. The user terminates the program by touching

the EXIT button.

Although the program just described is limited, it is an important first step

toward the development of a complete flowchart programming system. When this

program is coupled to a flowchart interpreter, a compiler, and a numeric

processing facility such as the TAM system described below, a user will have

a powerful programming facility that operates directly in a flowchart language.

This will allow the user to create, debug, and test his program in a fraction

of the time presently required by conventional means.

30 August 1971 14
System Development Corporation

TM-4786/000/00

4. TAM (THE ASSISTANT MATHEMATICIAN)

This description of TAM is divided into two parts. The first part isa general

description of the use of the system; sequences of still photographs show the

interactive use of the system and attempt to give the reader a "feel" for the

use of the system. The second part is a more detailed description of the

functions and capabilities of TAM.

4.1 GENERAL DESCRIPTION OF TAM

TAM is an interactive programming system for numeric computation using two­

dimensional input and output. The TAM language is ordinary two-dimensional

mathematical notation. TAM incorporates a powerful set of arithmetic operators

on constants, variables, and one- and two-dimensional arrays. It provides

many common functions such as trigonometric and logarithmic functions.· It

also provides looping facilities, single-statement functions, and user-defined

input and output.

The TAM console consists of a Graf-Pen data tablet with a CRT image rear­

projected upon it. The user prints on the data tablet and receives his output

on the same surface through projected CRT images.

Figure 5 is a sequence of pictures showing the use of TAM to find a root of a

quadratic equation using the formula

-b + ~ b
2

- 4ac

2a

2for one root of the equation aX +bX+c=O.

In Figure 5(a), the user has hand printed the expression on the TAM console.

In Figure 5(b), the user input has been processed by the character recognizer

and the mathematics parser. Each input character has been replaced by a computer­

generated character of the same size, aspect ratio, and position as the input

30 August 1971

(a)

15
System Development Corporation

TM-4786/000/00

(b)

(c)

Figure 5. Solution of Quadratic Formula

30 August 1971 16
System Development Corporation

TM-4786/000/00

character to verify character recognition. The mathematics parser has operated

on these input characters to produce a linear-string form of the mathematical

expression. This form is displayed so that the user can verify the linearization.

In future versions of TAM, the linear form will be converted back to a two­

dimensional form to simplify verification. In Figure S(c), the user has,

through the use of the button labeled TAM, requested execution of the expression;

the answer is displayed at the top of the screen.

Computational results can also be stored for later use. In Figure 6(a), the

previous expression has been recalled (by use of the LATEST button) and the

r
1

+ added. (Pictures of the hand printed input will be omitted from here on.)

Figure 6(b) shows the result of executing this expression. The value of a

variable may be displayed at any time, as shown in Figures 6(c) and 6(d).

Figure 7 shows the use of TAM for matrix arithmetic. In Figure 7(a), a matrix

has been defined; in 7(b), the value has been stored in TAM. Figures 7(c) and

7(d) show the matrix-inversion operation, denoted in the usual way. Figures

7(e) and 7(f) show matrix multiplication (the C matrix was stored previously).

TAM allows function definition. In Figure 8(a), the first-order approximation

of the orbital velocity of a satellite as a function of height has been printed.

Selecting the TAM button stores this for later use (Figure B(b». Similarly,

in Figures B(c) and B(d), the orbital time as a function of altitude is defined

and stored. In Figure B(e), the orbital time of a satellite at an altitude of

150 miles has been requested. TAM recognizes that the constants "g" and "R" in

the functions have not yet been defined, and requests them (Figures 8(f), (g),

(h), (i». When all needed constants are defined, TAM computes the answer

(Figure B(j».

30 August 1971 17
System Development Corporation

TM-4786/000/00

(b)

(c) (d)

Figure 6. Variable Assignment

30 August 1971 18
System Development Corporation

TM-4786/000/00

(a) (b)

(c) (d)

Figure 7. Matrix Arithmetic

30 August 1971 19
System Development Corporation

TM-4786/000/00

(e) (f)

Figure 7. Matrix Arithmetic (Cont'd)

30 August 1971 20
System Development Corporation

TM-4786/000/00

(a) (b)

(c) (d)

Figure 8. Function Definition and Use

30 August 1971 21
System Development Corporation

TM-4786/000/00

(g) (h)

Figure 8. Function Definition and Use (Cont'd)

30 August 1971 22
System Development Corporation

TM-4786/000/00

(i) (j)

Figure 8. Function Definition and Use (Cont'd)

30 August 1971 23
System Development Corporation

TM-4786/000/00

An iteration capability is also available in TAM. In Figure 9(a), TAM has been

requested to print the orbital times for altitudes of 150, 300, 450, 600, "',

900 miles, with the result given in Figure 9(b). An alternative form of the

iteration statement, shown in Figure 9(c), gives orbital times for altitudes of

780, 832, 1150, and 22,500, shown in Figure 9(d).

TAM incorporates a powerful editing system to aid in composing and altering

expressions. Characters and groups of characters may be deleted, changed, or

moved. Figures 10, 11, 12, and 13 are sequences of pictures showing the

editing operations. Figures 10(a), (b), and (c) show the scrub operation used

for erasing characters. All characters within the rectangle around the scrubbed

character are erased. The scrub may also be used in conjunction with the

CONTEXT button to erase a set of related characters; Figures 10(d) and (e) show

that, after the CONTEXT button is used, scrubbing a character causes erasure of

its associated subscripts and superscripts.

The erasure operation can be performed at any time. The other operations-­

open up, close up, and move characters--require that the MOVE light button be

touched before the operation is indicated. Figure 11 shows the open-up

operation, which is used to create a space in an expression. Characters are

moved horizontally in the direction of the line drawn by the user; The

distance moved is equal to the length of the line. Figure 12 shows close up,

which is used to close up unwanted spaces in an expression. In this operation

the portion of the expression to the right of the close-up symbol is moved

left a distance equal to the length of the symbol. Figure 13 shows the

"move characters" operation. All characters within the circle are moved as

indicated by the line.

4.2 DETAILED DESCRIPTION OF TAM

This section gives a detailed description of TAM as a programming language.

It includes sections on the entities, operations, and statement forms of TAM.

In some areas, TAM may appear to be a very complex language. It is important

30 August 1971 24
System Development Corporation

TM-4786/000/00

(a) (b)

(c) (d)

Figure 9. Iteration Statements

30 August 1971

(a)

25
~ystem Development Corporation

TM-4786/000/00

(b)

(c)

Figure 10. Erasure

30 August 1971 26
System Development Corporation

TM-4786/000/00

(d) (e)

Figure 10. Erasure (Cont'd)

30 August 1971 27
System Development Corporation

TM-4786/000/00

(a)

(c)

Figure 11. Open Up

(b)

30 August 1971

(a)

28
System Development Corporation

TM-4786/000/00

(b)

(c)

Figure 12. Close Up

30 August 1971

(a)

29
System Development Corporation

TM-4786/000/00

(c)

Figure 13. Move Expression

30 August 1971 30
System Development Corporation

TM-4786/000/00

to remember that, although the description of a certain facility may be complex,

in operation the facility behaves in the manner that an ordinary user would

expect. The very "naturalness" of TAM imposes considerable complexity on the

internal operation of the system.

4.2.1 TAM Entities

Quantities. Quantities in TAM are either positive or negative integral or

mixed numbers. Internally, mixed numbers are carried in double-precision

floating-point form; integers are carried in one IBM/360 word (4 bytes).

Therefore, effective precision is that defined for the IBM/360. Quantities

may be contained in variables or arrays or expressed as constants. Most

storage declaration is implied by usage. Arrays are dimensioned either

implicitly or explicitly.

Examples: 3 5.7 [1.0 2]
3 .45

-.37

Identifiers. Variables and array identifiers are single-letter names. The

legal alphabet of TAM consists of Greek and Roman uppercase and lowercase

letters. An identifier may be made unique through the use of overscoring or

underscoring. Legal overscore and underscore characters are:

Some example identifiers are:

a

A

A

A

a

.
ex

30 August 1971 31
System Development Corporation

TM-4786/000/00

4.2.2 TAM Operators

Operators. Quantities may be manipulated through use of operators as shown.

a + b

a - b

ab,a·b,a*b

addition

subtraction

multiplication

division

exponentiation

thn root

factorial

n
II

i=m

n
L

i=m

+b,-b

T

absolute value

ceiling

floor

product

summation

unary sign

transpose (2-dimensional arrays only)

Note that implicit multiplication is allowed because all identifiers are single

letters (possibly qualified). A special operator, V, is used in conjunction

with setting arrays and is explained subsequently.

30 August 1971 32
System Development Corporation

TM-4786/000/00

Operational Hierarchy. Parentheszation is allowed to control the parsing

hierarchy. In the absence of parentheszation, the hierarchy of operation is,

from least to most binding:

L

II

+,­
*,/
+,-

sunnnation

product

addition, subtraction

multiplication, division

unary plus, unary minus

factorial

floor, ceiling, function call, absolute value,

root, exponentiation, transpose

Operator Definition. Each operator is usable when meaningful. With few

exceptions (for example, transpose applies to matrices only; (-3)! is signaled

as an error), all operators are usable to manipulate single constants or

variables. The operators are legal when applied to arrays when an acceptable

matrix or vector operation is defined. For example

[; ~] -3

[~ ~J 1/3

is defined if the matrix is square

is not defined

* [; ~] -1 is defined if the divisor is a square

matrix and the interior dimensions of

the two matrices are the same

is not defined

30 August 1971 33
System Development Corporation

TM-4786/000/00

One-dimensional arrays are stored and treated as row vectors, with one

exception. In multiplication, if one or both operands are vectors, the

operand on the left (if a one-dimensional array) is treated as a row vector

and the operand on the right (if a one-dimensional array) is treated as a

column vector. The multiplication performed is the dot product. Therefore,

[1 2 3] *
14

4.2.3 TAM Statements

There are five distinct TAM statements: assignment, function definition,

input, output, and loop.

Assignment Statement. The assignment statement is used to set identifiable

variables or arrays, presumably for use in subsequent statements. An assign­

ment statement is of the form:

identifier + expression

The expression may consist of any legal manipulation of quantities.

For example:

A
A + 3

C+[V lIlJ3,5

A
Set variable A to 3;

set array B to the given matrix (also

dimension B as 2,3). The elements of the

matrix B may be any legal expression thC!-t

yields a single numeric value;

set all elements of array C to lIl, dimension

C 3, 5;

set first element of array D to 25.5 (the

dimensionality of D is unknown as yet);

30 August 1971 34
System Development Corporation

TM-4786/000/00

i
X + -I:

j=l
set X to minus the sum of the elements of the

A
first row (A=3) of ~

th
set Y to the sum of 11. to the -X power and

the product of the absolute value of X and the

square root of B2 2-,

The third example illustrates the use of the special operator V. It is used

to declare, dimension, and preset an array (of one or two dimensions). The

full form of the operator is:

v t Ps,

where sand t are dimensions (t and the preceding comma are optional) and p

(also optional) is the presetting value. P, may be any legal expression that

yields a single numeric value.

Function Definition Statement. The TAM user may define frequently used

arithmetic expressions as functions; he may then call upon these functions

when necessary. Functions, of course, return values. The function definition

and call may contain parameters. Both the f~nction expression and the actual

parameters of the call may contain calls to other functions. The function

definition statement has the form:

f (P"P2' ••• P) = expressionn _ m

where f is a legal identifier, n is an optional alphabetic or numeric qualifier,

and the p. are optional parameters. The expression may involve any legal
l.

manipulation of quantities. The identifier f, once it has been used as a

function name, defines a class of functions f and cannot be later used as a
n

variable or array identifier. The various functions in class f are distinguished
- 2

from one another through the use of the qualifier n. For example, Gl(X) = X

30 August 1971 35
System Development Corporation

TM-4786/000/00

and G
2

(X) = /}f are two functions in class G; G + 3 is an illegal statement.

aand G are not in class G. As many function classes as desired may be

defined. The optional parameters, Pi' must be legal identifiers. The same

identifier may be used as a parameter in many function definitions and also

as a variable or array name or as a function class.

An example function definition and call is:

definition:

To exponentiate the value returned by a function, it is permissible to write

(for function a, parameters b, c, and exponent 2):

or

2a(b,c)

Input Statement. Because TAM requests values for undefined quantities as they

are encountered, user-directed input is seldom necessary. However, an input

statement is provided so that the user may guide the order of quantity setting

in a direct fashion and so that he may reset quantities easily. An input

statement is of the form:

o + list

where the list consists of legal identifiers (of simple variables or arrays)

separated by commas. The statement results in a request for input(s) from the

user. A value for each element in the list is requested in turn. For example:

o + Q,a

30 August 1971 36
System Development Corporation

!M-4786/000/00

results in the user being prompted with

n +-

Hopefully, the user will then respond with a value for n.

TAM will then request a value for a by writing

a +-

Once again, the user is expected to input a value for a.

Output Statement. An output statement has the form of a list, where the list

consists of expressions or identifiers separated by commas. For example, the

statement:

B, 3 + 5

r~su1ts in the output

[123]
456

assuming B has been defined as the given matrix. If B has not yet been defined,

the following, rather unusual, result occurs:

The user is first asked to input a value for B by the prompt

B +-

After receiving B, TAM outputs it.

Loop Control. An assignment statement, input statement, or output statement

may be iterated by following the statement with loop-control information.

Loop control may be specified in three forms. Loops may be nested to any

level, but each loop variable in the nest must be unique.

Loop Control, Form I

Statement: i=m, ••• ,n

where i is the loop variable (an identifier of a simple variable whose value

will be incremented by one for each iteration of the statement), m is the

30 August 1971 37
System Development Corporation

TM-4786/000/00

initial value for i, and n is the terminal value. m and n may be any legal

expressions that yield single numeric values. The iteration is complete when

i exceeds n. The statement iterated may, but need not, contain references to

i.

Loop Control, Form 2

Statement: i=ml ,m2, ••• ,n

where i is the loop variable, ml and m2 are the first two values for i as the

statement is iterated and m2-ml defines the loop increment (or decrement), and

n is the terminal value. ml ,m2 and n may be any legal expressions that yield

single numeric values. The iteration is complete when i exceeds (or becomes

less than) n. The statement iterated may, but need not, contain references

to i.

Loop Control, Form 3

Statement: i=ml,m2,m3,m4, ..• mn

where i is the loop variable and the mj are successive settings for i each

time the statement is iterated. (The elipsis (•••) shown is not a part of the

loop-control form, as it is in the two previous forms, but is included to

indicate that the list mj is of user-determined length.) The loop terminates

after the statement has been executed for i=m. The statement may, but need
n

not, contain references to i. For example,

X. j+Y +Q:i=1, ••• ,5: j=2,4, ••• ,8:
~,

Y=3.5,2.l, ••• ,-6.2:

Q=86,~,4.7,i+j

is a redundant example of a four-level nest of loop control. The level of

nesting proceeds from right to left, i.e., Q is the outermost control variable,

i is the innermost.

30 August 1971 38
System Development Corporation

TM-4786/000/00

Built-In Functions. TAM includes a set of built-in functions that the user can

activate by including one of the names given below (along with an appropriate

parameter) within any context in which a function call is permissible. The

available functions are:

Name and Parameter

sin(x)

cos (x)

tan (x)

cot (x)

arctan(x)

tan-l (x)

In(x)

'Definition

sine(x)

cosine(x)

tangent (x)

cotangent (x)

arctangent (x)

arctangent (x)

natural logarithm(x)

In expressing the name, any combination of uppercase and lowercase Roman letters

is permissible; e.g., Ln=ln=LN.

30 August 1971
39

(Last page)

REFERENCES

System Development Corporation
TM-4786/000/00

[1] Bernstein, M. I., and H. L. Howell. "Hand-Printed Input for On-Line

Systems: Final Report for Phase I." SDC document No. TM-(L)-3964/000/00.

April 14, 1968.

[2] Williams, T. G. "On-Line Parsing of Hand-Printed Mathematical Expressions:

Final Report for Phase II." SDC document No. TM-4158/000/00.

December 27, 1968.

[3] Bernstein, M. I. "On-Line, Interactive Parsing and Programming: Final

Report for Phase III." SDC document No. TM-4582/000/00. August 11, 1970.

